Treatment for hepatitis C infection in the UK Collaborative HIV cohort (UK CHIC) study

<u>Alicia Thornton</u>, Caroline Sabin, Sophie Jose, Sanjay Bhagani, David Chadwick, David Dunn, Martin Fisher, Richard Gilson, Janice Main, Alison Rodger, Chris Taylor, Mark Nelson

Background

- The aim of treatment for hepatitis C virus (HCV) is a sustained virological response (SVR): negative HCV-RNA 6 months after treatment has ceased
- SVR is associated with a reduction in the risk of liver-related events and it may reverse fibrosis and cirrhosis caused by HCV infection
- Treatment with Pegylated interferon (Peg-IFN) and ribavirin is long, difficult to tolerate and of low efficacy
 - 24.5% SVR among co-infected patients with genotype 1 or 4¹
 - 59.4% SVR among co-infected patients with genotype 2 or 3¹
- New treatment strategies (directly acting agents) are not yet available for everyone and regimens may still include Peg-IFN

¹ Davies et al, 2013, PLOS One

Aims and objectives

Aim:

• To describe patterns of treatment for HCV among a cohort of HIV/ HCV co-infected individuals in the UK

Objectives:

- 1. To identify factors associated with receiving any HCV treatment
- 2. To characterise the treatment received with regard to drugs included and time on treatment
- 3. To identify factors associated with treatment failure defined as a positive HCV-RNA test in the one year after stopping treatment

Methods 1

UK CHIC

- Observational longitudinal study of HIV-positive adults
- 11 centres contributed additional data on HCV co-infected individuals seen for care from 2004 onwards including data on liver disease outcomes and HCV treatment

Inclusion/exclusion criteria

- All individuals included in the expanded data collection with a positive HCV-RNA test at any time during follow-up
- No evidence of HCV treatment before entry into the cohort
- Among treated individuals, at least one HCV RNA test in the year after stopping treatment

Methods 2

• Cox proportional hazards models used to identify independent predictors of each outcome

Outcome	Follow-up	Censoring
1. Starting HCV treatment	From : Earliest of cohort entry or first positive HCV test	Evidence of spontaneous HCV clearance
	Until: Starting treatment; date of death; last date of follow-up	
2. Treatment failure	From : Date of stopping treatment	Evidence of a subsequent course of HCV treatment
	Until: A positive HCV-RNA test; death; last date of follow-up	

Results: Treatment received

- 929/2272 (40.9%) co-infected individuals received any HCV treatment
- 114/929 (12.3%) received > one course of treatment

Drugs included in	Number of individuals (%)			
regimen	1st episode of treatment	2nd episode of treatment	3rd episode of treatment	
Peg IFN/IFN alone	43 (4.6)	3 (2.6)	0 (0.0)	
Peg IFN/IFN + Ribavirin	836 (90.0)	91 (79.8)	12 (85.7)	
Regimens including DAAs ¹	50 (5.4)	20 (17.5)	2 (14.3)	

¹Regimens included: Peg-IFN and ribavirin plus either telaprevir or boceprevir; sofosbuvir plus ribavirin and sofosbuvir alone

Results: Individuals starting treatment

- 2163 individuals included in analysis¹, 820 of whom started treatment (37.9%):
 - Median age 37 (IQR 32, 43) years
 - 83.5% (1806/2163) of white ethnicity;
 - 61.1% (1322/2163) men who have sex with men (MSM)
 - 27.7% (601/2163) diagnosed with HCV in the acute stage
- Median time between first positive test and starting first HCV treatment: 11.2 months (IQR 3.7, 46.6 months)
- Median time on treatment: 47.7 (IQR 24, 48) weeks

¹ Excluding n=49 whose date of starting first episode of treatment was unknown; n=58 who started HCV treatment before their first recorded positive test; and n=2 individuals whose first treatment was before entry into the cohort

Results: Predictors of starting treatment

Results: Treatment failure

- Treatment episodes which included DAAs were excluded from the analysis
- There were 417 separate episodes of treatment where at least 1 HCV-RNA test result was recorded in the year after stopping treatment
- 138/417 (33.1%) episodes of treatment showed evidence of failure in the year after treatment ended
- No association was found between treatment failure and age, ethnicity, HIV exposure group, year of starting treatment, CD4 count, HIV viral load, HAART or treatment episode number

Results: Predictors of treatment failure

		Crude Odds ratio (95% CI)	P value	Adjusted Odds ratio (95% CI)	P value
Acute HCV	No	1	-	1	-
	Yes	0.70 (0.50-0.97)	0.03	0.61 (0.41-0.92)	0.01
HCV viral load ¹	(per log copies/ml)	1.26 (1.04-1.53)	0.02	1.26 (1.12-1.42)	0.0001
HCV genotype	1 or 4	1	-	1	-
	2 or 3	0.42 (0.23-0.78)	0.01	0.34 (0.15-0.81)	0.01
	Other/unknown	1.32 (0.90-1.94)	0.15	1.67 (1.04-2.69)	0.04
HBV co-infection	No	1	-	1	-
	Yes	1.06 (0.65-1.73)	0.82	1.31 (0.74-2.31)	0.36
	Unknown	1.74 (1.10-2.75)	0.02	1.65 (0.85-3.30)	0.16
Time on treatment	(per week)	0.85 (0.78-0.92)	<0.0001	0.73 (0.66-0.80)	<0.0001

¹ HCV viral load was unknown for 91 individuals

Limitations

- Limited post-treatment HCV-RNA test results
- Unable to assess end of treatment response or SVR
- Determining acute HCV infection
- No information on HCV reinfection

Summary and conclusions

- A significant group of co-infected individuals have not received treatment or have failed treatment for HCV infection
- These individuals remain at risk of developing liver disease and would benefit from access to new treatment strategies
 - In particular, those who are not diagnosed within the acute stage; those who with genotype 1 or 4 infection and those who remain on treatment for shorter period
- Further work should concentrate on collection of data which can be used to assess treatment outcomes more thoroughly as new drugs become used more regularly

Acknowledgements: Hepatitis subgroup of UK CHIC

- Chelsea and Westminster: Mark Nelson, Ashley Moyes, Laura Phillips, Elisha Seah
- UK CHIC steering committee hepatitis subgroup:
 - Sanjay Bhagani, Andrew Burroughs, David Chadwick, David Dunn, Martin Fisher, Richard Gilson, Janice Main, Mark Nelson, Alison Rodger, Chris Taylor

• Participating UK CHIC centres:

- Brighton (M Fisher, N Perry, E Youssef, Elton John Centre Staff); St Mary's (N Mackie, G Cooke, J Main, S Reeves, Wharfside clinic staff); Chelsea and Westminster (M Nelson, C Fletcher, A Moyes, L Phillips, E Seah); Mortimer Market (R Gilson, P Muniina, N Brima); Kings (F Post, L Campbell, K Childs, C Taylor); Royal Free (A Rodger, S Bhagani, C Chaloner, K Singh); Edinburgh (C Leen, S Morris, A Wilson); North Middlesex (A Schwenk, A Waters, S Miller); Bristol (M Gompels, S Allen, H Wilson); Middlesbrough (D Chadwick, J Gibson); Woolwich (S Kegg, T Leitao)
- Funders:
 - Additional funding for hepatitis data collection was received from Bristol Myers Squibb,
 Abbott, Boehringer Ingelheim, Gilead Sciences and Merck, Sharp & Dohme

Acknowledgements: UK CHIC

Research Department of Infection and Population Health, UCL Medical School: C Sabin, T Hill, A Phillips, S Jose, S Huntington, A Thornton

Medical Research Council Clinical Trials Unit (MRC CTU): D Dunn, A Glabay Brighton and Sussex University Hospitals NHS Trust : M Fisher, D Churchill, N Perry, S Tilbury Chelsea and Westminster NHS Trust: B Gazzard, M Nelson, M Waxman, D Asboe, S Mandalia Kings College London School of Medicine, GKT Hospitals: F Post, H Korat, C Taylor, Z Gleisner, F Ibrahim, L Campbell Mortimer Market Centre, UCL Medical School: R Gilson, N Brima, I Williams Royal Free NHS Trust/UCL Medical School: M Johnson, M Youle, F Lampe, C Smith, A Phillips, R Tsintas, C Chaloner, S Hutchinson Imperial College Healthcare NHS Trust: J Walsh, N Mackie, A Winston, J Weber, F Ramzan Barts and the London NHS Trust: C Orkin, J Lynch, J Hand, C de Souza Homerton University Hospital NHS Trust: J Anderson, S Munshi, D Awosika The Lothian University Hospital NHS Trust: C Leen, A Wilson North Middlesex University Hospital NHS Trust: A Schwenk, J Ainsworth, C Wood, S Miller Health Protection Agency Centre for Infections: V Delpech North Bristol NHS Trust: M Gompels, S Allan University of Leicester NHS Trust: A Palfreeman, A Moore, L Fox South Tees Hospitals NHS Foundation Trust: D Chadwick, K Baillie Woolwich NHS Trust: S Kegg, P Main Coventry NHS Trust: S Allan St. George's NHS Trust: P Hay, M Dhillon York: F Martin, S Douglas

UK CHIC is funded by the UK Medical Research Council